Of Carrageenan and Health

Image of Mazzaella laminarioides by M. Graham.

We’ve lost count of how many times we’ve been asked about carrageenan and it’s ability to cause cancer. Controversy swirls around this molecule and it’s easy enough to google ‘carrageenan’ to find calls for banning its use. For those of you unwilling to read the entire post, let us summarize that carrageenan does not cause cancer! Like any good conspiracy theory, the claim is built off of a grain of truth. A study referencing the wrong molecule exaggerated it’s effects and became sensationalized by the media. That study has been refuted numerous times by a variety of academic and government agencies. However, the damage was done, and the internet is a very unforgiving place for misguided information. We will review the uses, definitions, and conflicting studies behind this controversy.

What Is Carrageenan?

Carrageenan is a component of some red seaweeds most notably Chondrus crispus, also known as Irish moss. The molecule itself is a sugar, a polysaccharide to be exact. There are a variety of carrageenans that are described by their bonding configuration and molecular weights (Mw). These varieties, like most molecules, can take their shape through chemical processing to fulfill different functions. Typically, carrageenan refers to the sugar used in the food industry (Mw 200k-800k Da) as a thickening agent, and can be found in many common household items. The sugar is also non-digestible to humans (stay tuned for upcoming post) making it a sought after additive for low calorie sweets treats. Irish moss has been harvested for over 14,000 years for human consumption, and carrageenan has been used as a thickening agent since at least the 19th century.

Where is the grain of truth?

Dr. Joanne K. Tobacman is the most cited reference in carrageenan attacks. In 2001, she published a review of carrageenan and it’s effects on health in the journal of Environmental Health Perspectives. She cited a study from 1982 that linked degraded carrageenan (also known as carrageenan gum or poligeenan Mw 20k-40k Da) to cancer in lab animals. In her review she also cited a number of papers investigating degraded carrageenan causing intestinal inflammation leading to ulcers and lesions. In her paper, Dr. Tobacman suggested that the use of carrageenan be reviewed by the FDA and change the restrictions to the molecular weight requirements as a food additive.

The rebuttal

It turns out that the term carrageenan was misused in the previous studies. Dr. Myra L. Weiner published a paper refuting Dr. Tobacman in 2016 in the journal of Food and Chemical Toxicology called ‘Parameters and pitfalls to consider in the conduct of food additive research, Carrageenan as a case study’. Dr. Weiner’s followup paper in 2017 again stated the importance of defining the molecule in question and illustrated the root of the issue in regards to carrageenan. Dr. Weiner laid out the argument that previous studies misused the name carrageenan by confusing degraded carrageenan and poligeenan with non-degraded carrageenan, lacking fundamental understanding of physical/chemical and toxicological properties. Non-degraded carrageenan is used as a food additive, while degraded carrageenan and poligeenan are not. The process to degrade carrageenan requires high heat (95C) and acid (<1pH) which neither occur within the human body. Weiner concluded that the non-degraded form of carrageenan, typically refereed to simply as carrageenan, was perfectly safe for food use and it has continued to be used to this day.

Going forward

The FDA supports carrageenan use and classifies it as meeting organic standards. The EU has also re-evaluated carrageenan as safe, with a clear banning of poligeenan defined by molecular weights. However, there is still pressure to remove the sugar from commercial products. There are still hundreds of ‘nutrition/ health’ articles out there sounding alarm bells to not use products containing carrageenan.

We certainly understand the importance of understanding the food you are consuming, and it’s a shame that some companies have caused such distrust among consumers. There has been so much positive change recently to correct this consumer trust, but there is still a long way to go. The wealth of information on the internet is daunting and confusing when it comes to nutrition. We have embedded all the links to the actual publications and government reports within this post. You can read the letter from the FDA to Tobacman rejecting her petition to ban carrageenan.

TAKE HOME MESSAGE: The production of carrageenan is in fact another safe and positive reason to support the rise of seaweed farming in the US and globally. If you hear otherwise, you are probably reading an article recycling the misinformation described above. Always check with your source ….

Our dulse is being served in the #1 restaurant in the world- Eleven Madison Park.

We are proud to announce that Monterey Bay Seaweeds is being plated at Eleven Madison Park in NY. If you haven’t heard of them, Eleven Madison Park has been rated #1 on the top 50 restaurants in the world (2017) and has been given 4 stars from the NY Times.

We can’t wait to hear what Chef-owner Daniel Humm has planned for our dulse.

What makes the red abalone red?

The red abalone (Haliotis rufescens) obtained it’s name by the red coloring on it’s shell. If you look closely you can see bands of red and greenish-brown. Well you know the old saying, “you are what you eat.” It turns out that the abalone shell directly reflects what kind of algae it consumes. For that very reason the red abalone requires a diet rich in red seaweeds (Rhodophyta), otherwise the shell looks green and is harder to sell on the market as a red abalone.

Monterey Bay Seaweeds supplies red seaweed (ogo and dulse) for our friends at the Monterey Abalone Company. The seaweed is a special treat for the little molluscs, ensuring they are red, healthy, and delicious.

Here is a recent blurb from Justin Cogley, a local chef who uses our seaweed and abalone from the Monterey Abalone Company. You can visit his website at http://www.chefjustincogley.com/ for culinary news and recipes.

Do you have a question about seaweed, do you ask a phycologist or an algologist?

It’s tempting to simply add ‘ology’ to the end of a word when referring to the study of a subject. For that reason many people often refer to a person who studies algae as an algologist. The true meaning of algologist is ‘one who studies pain’. From the Latin root word algos meaning pain.

The correct term for the study of algae is phycology, from the Latin root phycos meaning seaweed. The use of the term algology, as the study of algae, is so prevalent that most dictionaries will define it as ‘the study of algae: see phycology’. To make matters worse I have seen algology defined simply as phycology.

Be warned, when using the correct terms phycology or phycologist, be prepared for people and computers to correct you with, “Do you mean psychology?”

AlgaeBase: One of the best algae resources available!

Have you ever gone to your favorite sushi spot and ordered a side seaweed salad made of wakame? While the connotation is that wakame refers to the intertdial species Undaria pinnatifida, the literal translation from Japanese is ‘seaweed’. An alga’s common name can vary by region and language while the scientific name is a global standard. These scientific or ‘Latin’ names can change over time as new discoveries appear; this was the case in the early 2000s with the leaps made in genetic sequencing technologies.

If you ever want to know the history of an alga’s Latin name, or know the common name in any part of the world, look no further. AlgaeBase.org is by far one of the best algae resources available to the public. On AlgaeBase you can look up common names of algae and find all names ever associated with it. You can also find other species information such as ecology, images, global distribution, and common uses. Each bit of information is linked to a vetted document, typically a peer-reviewed journal.

Take a minute and visit the site. Poke around and look up some of your favorite seaweeds, you might be surprised with what you find.

How will we feed 9.6 billion people in 2050? The solution is within the ocean

The population is estimated to reach 9.6 billion by 2050. The FAO has reported that mankind will need to produce 70% more food than it did in 2009. Agriculture has had over a hundred years of industrialization to surpass global food supply expectations. Yet, we have become a population dependent on GMO mono-crop culture. With agriculture already at it’s maximum efficiency, where will the extra 70% of food come from?

While the land has had tremendous science and technologies invested in crop cultivation, we are still essentially hunting in the oceans. The oceans make up 70% of the earth surface and we have yet to realize it’s full potential in attaining food security.

Here is a recent article in Quartz about the future of ocean farming

Otters and urchins and kelp ... oh my! Does your kelp forest require otters? Maybe not.

It’s sea otter awareness week, and after reading enough posts about how sea otters save kelp forests, we thought it time that we set the record straight.

Sea otters (Enhydra lutris) are commonly thought to be the keystone species in kelp forest ecosystems along the west cost of North America, from the Aleutian Islands to California. The well known paradigm follows the logic that urchins can eat and destroy entire kelp beds, leaving a low diversity/productivity urchin barren. Sea otters are veracious predators of urchins, and when otters are present in a kelp bed, they control urchin populations and prevent barren formation. While sea otters can definitely be effective keystone predators in some systems, the full story is much more complex.

The fur trade in the 1800 nearly caused the extinction of the sea otters. In 1911, otters gained government protection and their populations began to recover. A number of studies showed that the recolonization of sea otters in the Aleutian Islands were able to mitigate urchin barrens (1,2,3). The effect was quick and broad. These systems were clearly dysfunctional in the absence of otters. Subsequently, this idea of top down control became prevalent in scientific circles and an overarching theme applied to all kelp beds. Yet, in California, where otters had been absent for a hundred years, many kelp beds were thriving. Of the 224 kelp beds in southern California in the 1980s, only 10% were classified as urchin barrens (4). How was it that these beds could be doing just fine without otters, while the beds in the Aleutians clearly needed them?

It turns out, that kelp beds in the Aleutians are simple systems and contain few other urchin predators, while the California beds have a number of other species that can fulfill that functional role: the sun star (Pycnopodia helianthoides), sheephead (Semicossyphus pulcher), and the spiny lobster (Panulirus interruptus) (5,6). Urchin barrens do occur in southern California, but generally these are areas (1) subjected to over-fishing of these urchin-eating predators or (2) high levels of pollution, temperature, or other disturbances that directly kill the kelp. Southern California also experiences urchin disease and El Ninos, which can control urchins independent of otters. In fact, its been over one hundred years since an otter swam through the kelp fronds of the worlds largest kelp forest at Point Loma in San Diego, yet this forest remains the global example of a well functioning kelp system.

Food webs within kelp beds are complex and vary in space and time. What is clear, is that kelp forest resilience depends on biodiversity, and over-fishing/ hunting and other disturbances can tip the scales in favor of urchins. This is currently happening in various locations along the Monterey Peninsula, in plan view of a healthy otter population, though this situation probably wont last long. Otters are veracious predators of urchins and can stop or help mitigate urchin population explosions, especially when they are the only form of protection from urchin grazing. Such simple kelp systems, however, are restricted to certain geographic regions (e.g. the Aleutians), whereas other kelp beds (like in California) have a higher diversity of sea otter predators and other forms of urchin control, and don’t require otters for the kelp forest to function properly. But with impending climate change and human impacts on kelp systems, who knows what will happen and those charismatic furry little urchin predators may serve as an insurance policy if all hell breaks loose. Until then, at least they are fun to watch.

  1. Estes and Palmisano 1974

  2. Estes et al. 1978

  3. Estes and Duggins 1995

  4. Foster and Schiel 1988

  5. Watanabe 1984a

  6. Tegner 1980

Hello World!

Today we are announcing that Monterey Bay Seaweeds’ blog page is going live! Dr. Michael H. Graham is a tenured faculty professor and heads the aquaculture division at Moss Landing Marine Labs in California. He is also owner of the Monterey Bay Seaweed company, which provides edible seaweed delicacies. This puts Michael in a unique position to talk about a range of topics relating to seaweeds. The blog will cover cuisine, nutrition, aquaculture practices, ecology, and cutting edge science. While we will be quick to share news, we will be just as quick in dispelling false information in the hopes that the public will be properly informed about their food choices and their environmental impacts.

Please follow us on Facebook, Twitter, or sign up for our news letter.