aquaculture

"I want kelp on every table in America"

Sarah Redmond, founder of Springtide Seaweed, has a clear vision for the future of seaweed cultivation. Springtide is perusing an additional 20 acre site to accompany their 35 acre site off Stave Island Maine. Redmond claims there is plenty of room for growth when it comes to seaweed cultivation and that it can be done sustainably without competing with other marine activities.

Springtide Seaweed’s products are powders that can be used as culinary seasonings and salt substitutes. Redmond said, “I want kelp on every table in America,” she said. “It is nature’s true healthy salt.”

Read the full article here from BDN Hancock

Kelp farming is therapeutic, introducing the Salt Sisters group

Today we discovered the Salt Sisters, a campaign to help women in recovery connect with themselves and their inner strength through a connection with nature.

Founded by Colleen Francke, the Salt Sisters use kelp farming as a way to recovery and support.

“This project isn’t just about growing kelp, helping the environment, or diversifying out of a troubled industry,” says Francke. “I want to show others, and largely women like myself, who may think that they have nothing or no way out of where they are, that in fact they have every opportunity in the world.”

We can’t support this enough! We salute you, Salt Sisters! Keep up the good work.

Read the full article here from National Fisherman

Seaweed Farmers in Japan are Creating new Varieties to Deal with Climate Change.

Undaria pinnatifida  (wakame) is a seaweed extensively cultivated, and is one of the most valuable edible seaweeds in Japan, Korea, and China. The cultivation season usually starts from autumn and runs through to spring, where the seaweed is grown on long lines suspended in the ocean.

However, the cultivation period has been delayed due to rising temperatures caused by global climate change. This prompted many germlings (juvenile sporophytes) of U. pinnatifida to fall from the strings during nursery cultivation. In response, seaweed farmers are creating new verities of seaweed, similarly to how a traditional land based farmer would cross pollinate varieties of fruits and vegetables. (For more information on the process read this article)

In a recent paper, researches crossed two varieties of U. pinnatifida to create a heat tolerant variety called NW-1. They then grew NW-1 along side with the standard variety HGU-1. The result was more juveniles remained attached to the long line and had more growth/ individual.

As oceans continue to heat, seaweed breading programs could help seaweed biomass and biodiversity loss due to climate change.

The Nature Conservancy is Changing its Tune to Seaweed Aquaculture

The Nature Conservancy (TNC), the worlds largest conservation NGOs, is changing how it sees aquaculture. For many years the organization has sounded alarms about the dangerous impacts of aquaculture to the environment, but recently has been involved in a number of aquaculture partnerships.

TNC has realized the important role of ecosystem services that some aquaculture can provide, specifically seaweed and shellfish. For example, they found that changing from fishing to seaweed farming, not only takes carbon and nitrogen out of the water, but also promoted more fish and lobsters in the surrounding water. TNC has released a promotional video of a seaweed farming success story (posted below).

“This is kind of a paradigm shift in how we’re trying to understand aquaculture, at least in the conservation world,” said Robert Jones, global lead for aquaculture at TNC. “We’re trying to turn this on its head.”

This is a big step in moving the conversation from aquaculture being dangerous to aquaculture being environmentally friendly.

Read a detailed article here from the Global Aquaculture Advocate

Read an article here from TNC “Sustainable Aquaculture: A viable economic alternative to fishing”

Shrimp farming is getting a boost from incorporating seaweeds

Aquaculture is beginning to shift from mono-culture to integrated multi-trophic aquaculture (IMTA). While IMTA is still relativity a new idea in the industry, nature has been doing it all along and new studies keep illustrating the benefits.

A study just came out this month (Jan 2019) that looked into adding seaweed to shrimp farms. The study added three seaweeds: Gracilaria vermiculophylla, Ulva lactuca,  and Dictyota dichotoma to ponds growing white legged shrimp Litopenaeus vannamei. Then shrimp were infected with V. parahaemolyticus and WSSV to assess disease resistance and response.

The use of macroalgae in co-culture with L. vannamei provided a nutritional benefit that achieved higher growth than the control organisms, as well as improvements of the ammonium concentration and immune response after infection with V. parahaemolyticus and WSSV.

The study concluded that these additional benefits were diet related, however, live seaweeds would change the water properties and testing water quality would be an interesting next step.

This is a good example how a company could change from one product to two while enhancing yield and quality of the original product with very little additional cost.

This research was published in the Journal of Fish & Shellfish Immunology

U.S. seaweed consumption is growing about 7% a year

James E. Griffin, an associate professor at Johnson & Wales University , claims that the U.S. consumption of seaweeds is growing approximately 7% annually. Griffin made this claim at the NRA (National Restaurant Association) show in May 2018. He also stated that the fine-dinning sector is leading the charge, while the U.S. consumer still lags considerably behind Asia and Europe in consumption.

As with other sea food, most of the seaweed in the U.S. is imported from Asia, about 90% said Griffin. This means that the U.S. has a growing market with little local production. Griffin also pointed out that the seaweed source matters, as they can take up heavy metals from the surrounding water. The U.S. has higher restrictions and oversight on water pollution than most countries, and could be well positioned to pivot to producing rather than importing.

Read the article from Nation’s Restaurant News

Chileans are shifting from seaweed gatherers to cultivators

A recent article in Botanica Marina highlights a shift in the seaweed industry. The seaweed industry in Chile has predominately been a process of gathering off the coast, but that’s all changing now. The Chilean government provided subsidies to seaweed farming activities and investments in local valorization of the resources. The subsidies coupled with an increased number of technical studies related to seaweed resources has enabled the industry to pivot to seaweed cultivation.

offshore vs. land-based seaweed farms, and why we went land.

Monterey Bay Seaweeds was the first land-based seaweed farm in California, possibly the entire United States, but why did we chose a land-based operation for growing seaweed?

As many of our readers will know, Dr. Graham is a tenured professor at Moss Landing Marine Laboratories. The lab has it’s own seawater intake system that it also shares with their neighbor, the Monterey Bay Aquarium Research Institute (MBARI). By entering an equity partnership with the marine lab and San Jose State University, Monterey Bay Seaweeds was able to utilize the existing infrastructure for their aquaria and get to work.

Offshore and land-based seaweed farms differ almost in parallel to large agriculture farms and greenhouses. Offshore seaweed farms are less space limited, and are capable of producing vast quantities. Typically kelps, or other common species, are seeded on long lines and hung in the ocean until the harvest season. Once harvested, the product is typically dried and stored until sale. The seaweed is typically bought in bulk for various uses. Due to seasonal variability, offshore farms are difficult to operate year round. Nutrient availability or fluctuating temperatures can also hinder production. A few bad seasons and your farm might go under.

On the other hand, land-based seaweed farms don’t mass produce due to the high price of space. They can however, produce year round. Land-based farms can also grow species that are harder or impossible to grow on lines. Just like a common greenhouse, everything can be controlled. If the seawater intake starts pulling in water that is nutrient poor or too hot/ cold, the entire system could be switched to artificial seawater. It’s this control that would be critical if climate change continues at the current rate. If the oceans become more acidic or too hot, land-based aquaculture might be the only option.

The added benefit to producing year round, is that the product can be harvested at any time. We can sell our seaweed fresh, any day. Fresh seaweeds give the chefs more options on how to use the product. They can more freely play with the taste, texture, and shape when constructing a dish. If they desire, they can always dry seaweed, but when you re-hydrate it, it’s never the same as it was.

India approves 1 billion USD in aquaculture infrastructure development

India has joined the growing list of countries that are supporting the growth of the aquaculture industry. It was announced today that the Cabinet Committee on Economic Affairs approved an amount of Rs7,522cr (roughly 1 billion USD) towards the creation of special fisheries and aquaculture infrastructure development fund (FIDF).

These funds can be allocated as loans to the aquaculture industry that have a maximum repayment period of 12 years, and will aid in achieving India’s goal of 15 million tons of aquaculture production by 2020.

The Russians are investing in aquaculture while the USA is standing by

In the last few years the Food and Agriculture Organization (FAO) and the United Nations have been showing global reports that aquaculture is on the rise. For the last decade the aquaculture industry has grown at a pace of 8% annually and has huge potential for future gains. The FAO report on global aquaculture lists the largest seaweed producers as China, Indonesia, Philippines, Korea, and Japan. The United States didn’t even make it to the top 15 producers (neither did Russia). While the top countries haven’t seen big production gains in the last decade the market is still growing leaving plenty of room for other countries to grow.

Today an article caught my attention in Seafood-Source “investments in Russian aquaculture on the rise”. The article speaks of the Russian government supporting the industry with the goal of tripling aquaculture output to 700,000 metric tons by 2030. While the output figure includes fish and other aquaculture species, they also plan on expanding seaweed production. Clearly the Russians are trying to establish themselves in this expanding market.

Why is the USA not joining the race? With an expansive coastline and nutrient rich waters, the USA is positioned to make a real contribution to global seaweed production. Many point the finger at government, citing that it can take over 10 years to attain a permit, if it’s ever approved. With such long lag times and uncertainty, attaining investments can also be challenging.

It’s clear more and more countries are willing to invest in the aquaculture/ seaweed industry. What is unclear is, if and when, the USA is willing to invest.

How will we feed 9.6 billion people in 2050? The solution is within the ocean

The population is estimated to reach 9.6 billion by 2050. The FAO has reported that mankind will need to produce 70% more food than it did in 2009. Agriculture has had over a hundred years of industrialization to surpass global food supply expectations. Yet, we have become a population dependent on GMO mono-crop culture. With agriculture already at it’s maximum efficiency, where will the extra 70% of food come from?

While the land has had tremendous science and technologies invested in crop cultivation, we are still essentially hunting in the oceans. The oceans make up 70% of the earth surface and we have yet to realize it’s full potential in attaining food security.

Here is a recent article in Quartz about the future of ocean farming