News

Farm bill passes that dramatically expands federal support for algae agriculture!

Today a landmark farm bill has been approved by the U.S senate. The bill places algal farming as a top concern for the country and gives algal farmers some of the privileges that traditional farmers have always had.

  • Crop Insurance– Algae are explicitly added under the definition of “agricultural commodity” for the purposes of federal crop insurance programs, paving the way for federal crop insurance for algae production

  • Algae Agriculture Research Program– Establishes a new USDA Algae Agriculture Research Program to address challenges in farm-scale algae production and support development of algae-based agriculture solutions

  • Biomass Crop Assistance Program– Provides for the first time full eligibility to algae under the Biomass Crop Assistance Program. BCAP provides financial support to farmers for establishment, production and delivery of new biomass crops

  • Biobased Markets Program (BioPreferred)– Directs USDA to establish methodology providing full credit for biobased content for products from biologically recycled carbon. Current USDA methodology excludes biobased products from recycled carbon.

  • Biorefinery Assistance (9003 Loan Guarantee) Program – Expands the section 9003 loan guarantee program to allow algae-based and other biorefinery projects for the manufacture of renewable chemicals and biobased products to qualify regardless of whether biofuels will be produced

  • Carbon Capture and Use – Adds several provisions expanding CCU research, education and outreach at the Department of Agriculture

This is a big win for algae and the USA!

The bill is to cross president trumps desk for a final signature before Christmas.

You can read the entire 800 page bill here

Climate change is raising iodine levels in seaweed. Cause for alarm? We think not.

A recent publication in Global Change Biology, reported that changing atmospheric and oceanic conditions, due to climate change, are raising the levels of iodine in seaweeds that can transfer up the food web. We think this is a great paper, and we strongly believe that many aspects of the ocean should be analysed to model future ocean conditions. Most work on algae in respects to climate change have been limited to calcifying reds, and the coral symbiot zooxanthellae. Seaweeds are the second largest biomass harvested from the oceans and more research is needed for that market.

A few news articles ran with the idea that seaweeds are becoming toxic, and are making headlines. While humans need iodine, too much can cause some of the same symptoms as iodine deficiency, including goiter (an enlarged thyroid gland) (NIH). However, we suggest caution when saying all seaweeds will become toxic.

For instance in the paper the study species Saccharina japonica was used, which is a species that is known to already have high concentrations of iodine. Saccharina and other species of brown seaweeds (kelp/ kombu) have much higher concentrations of iodine than other species (see figure below). Most consumed seaweeds (dulse, nori, wakame) have iodine levels 5x lower than Saccharina, and even with increases from climate change would not be considered dangerous.

People around the world choose to eat seaweeds because it’s rich in minerals including iodine, and we suspect this fact will not change. We encourage people to pay attention to the nutrition labeling on seaweed foods and monitor how much they consume. When reading papers or nutrition labels, note the seaweed condition (Dry vs. fresh). Most weight in seaweeds is attributed to water, and a serving size between dry and fresh can be a large difference. We also want to emphasize that iodine is not accumulated in your tissues, such as heavy metals.

We hope good studies like this continue, but use caution when reading news that oversimplifies the results.

 Image from American Thyroid Association 2004.  Full article here

Image from American Thyroid Association 2004. Full article here

Kampachi farms was awarded a $3.3 million grant to study seaweed as a source of energy and food

Kampachi farms was awarded a $3.3 million grant from the US Department of Energy (DoE) to study seaweed as a source of energy and food.

Kampachi farms is best known for growing King Kampachi (Seriola rivoliana). Now the Kampachi Company's Kyphosid Ruminant Microbial Bioconversion of Seaweeds (KRuMBS) project aims to culture seaweed for feed, fuel, and food.

Read more here from Undercurrent news.

Seaweed extracts used to make clothing

This is just too cool! We have reported before how seaweed extracts can be used for various plastic materials, but now the ADAY company has a new clothing line: the planet bae collection. The collection has various clothing items that are made from seaweed extracts. We looked into them a little and found out that their shirts are around 25% seaweed!

This is really exciting news for a number of reasons. The first being that this is the first reusable item made from seaweed that we have seen hit the markets. The focus thus far has been on replacing single use plastics. The second reason for excitement is the clothing industry is known to be extremely harmful to the environment, which has created an outcry for more sustainable clothing products.

Seaweeds can facilitate symbiotic microbes in agriculture

Modern agriculture is a marvel of the 21st century. Crop production has surpassed our expectations, many times over, in the last 100 years. However, this production has come with a cost. What is now being called our nitrogen addiction, refers to the amount of fertilizers used on farmland. The traditional soaking of soil is inefficient and leads to runoff: where nutrients are leaked into other surrounding ecosystems or the waterways.

Doesn’t sound so bad, what the problem with extra nutrients in the water? Well, the added nutrients cause boom bust cycles of other plants and algae that can tip the balance of an ecosystem. Currently there are numerous microalgae blooms off the coast of the USA, all are said to be a factor of agriculture runoff. This has caused an outcry for more responsible farming practices in reducing their nutrient loading.

One group in the UK has started using algae extracts and microbes to help crop efficiency. They claim that the seaweed extract facilitates microbes that help crops take up more water and nutrients, and therefore can reduce the amount of farm input by 20%. By reducing the amount of water and fertilizer used, the runoff will be far less than without the seaweed’s help. This could end up being a key strategy for responsible farming practices.

How do farmers get giant pumpkins? With a little help from seaweed.

Tomorrow is Halloween! Tradition dictates that you go to the pumpkin patch, select the pumpkin that calls to you, and carve it into a jack o'lantern. Every now and then, you will come across a giant pumpkin. You know the ones that we mean, they look like a half inflated beach ball that requires a forklift to move. The largest giant pumpkin ever recorded in the USA weighed an impressive 2,528 pounds.

How do they get so big? A farmer in Wisconsin shares his secret. At their farm they use seaweed. They claim that seaweed has extra minerals and nutrients that the pumpkin needs to grow fast.

Read more here

Moss Landing Marine Labs gets funding to study macroalgae in livestock feed

As previously discussed on this blog back on October 22nd, we mentioned researchers at UC Davis discovered that methane from cows can be dramatically reduced by including some red algae in their diets.

It was just announced Friday (Oct. 26th, 2018) that Moss Landing Marine Labs was awarded Seagrant funding to investigate and culture other methane reducing alga species. This funding was a part of the $6 million invested in ocean research projects by the Ocean Protection Council.

Dr. Graham of Monterey Bay Seaweeds will be joining the research team and sharing his expertise on land based algal culturing.

Robots are coming to save kelp forests from urchins

Kelp forests around the world have been in trouble. Some reports indicate that the global kelp biomass has been reduced by a 3rd in the last decade. Recently northern California, Australia, and Maine have been hit hard by a population explosion of purple urchins. These urchins graze on seaweeds and can clear entire kelp beds.

What’s causing these urchin booms is unclear, but most signs point to rising ocean temperature. With global temperatures set to rise, these urchin booms may become more frequent.

Some groups have taken it upon themselves to remove urchins from kelp beds, however this takes a lot of manpower and resources, such as, boats and SCUBA equipment. A new startup out of Stanford has designed robots that can go down to 120 feet underwater and collect urchins autonomously. This could be a vital resource in kelp forest defense.

Read more about their project here. (While this article is good at describing the project, we need to note the biological discrepancies. Kelp forests don’t provide 70% of the global oxygen. Kelp forests are important to fisheries, but there are a number of habitats that contribute to global fisheries and to say that kelp forests are the foundation of all fisheries is an overstatement)

India approves 1 billion USD in aquaculture infrastructure development

India has joined the growing list of countries that are supporting the growth of the aquaculture industry. It was announced today that the Cabinet Committee on Economic Affairs approved an amount of Rs7,522cr (roughly 1 billion USD) towards the creation of special fisheries and aquaculture infrastructure development fund (FIDF).

These funds can be allocated as loans to the aquaculture industry that have a maximum repayment period of 12 years, and will aid in achieving India’s goal of 15 million tons of aquaculture production by 2020.

Concerned about plastic pollution? Seaweed can help.

Plastics are everywhere. If you take a minute to look around your house, it’s really quite astonishing how much of it we use. It’s no wonder why plastics became so ubiquitous: it’s a cheap, flexible, and durable material. The issue is that these durable materials have been commonly used for single-use disposable items such as eating utensils, bags, containers, straws, packaging, bottles, the list goes on and on.

These single use items typically end up in the trash and can take up to 6 generations to breakdown. Plastics in the ocean have been accumulating at a far faster pace than their ability to break down. Some studies suggest at this rate there will be more plastic than fish in the oceans by 2050. To make matters worse, as plastics break down they create smaller and smaller plastic particles, commonly referred to as micro-plastics. Micro-plastics have made headlines in the last decade as, to our horror, we have discovered that we consume them constantly. Micro-plastics have been found in seafood, beer, salt, chicken, and water.

In response some cities have banned some plastic items, most notably bags and straws. However, this is a drop in the bucket and banning plastics entirely would be a political and economical nightmare. Luckily, seaweed is here to the rescue. A few clever groups have found ways to replace single use plastics by using seaweed extracts. So far we have seen seaweed replace packaging, straws, bottles, and even surf boards. These items are not only biodegradable, but generated from a sustainable resource. Look for more and more of these items to pop up in the near future.

The Russians are investing in aquaculture while the USA is standing by

In the last few years the Food and Agriculture Organization (FAO) and the United Nations have been showing global reports that aquaculture is on the rise. For the last decade the aquaculture industry has grown at a pace of 8% annually and has huge potential for future gains. The FAO report on global aquaculture lists the largest seaweed producers as China, Indonesia, Philippines, Korea, and Japan. The United States didn’t even make it to the top 15 producers (neither did Russia). While the top countries haven’t seen big production gains in the last decade the market is still growing leaving plenty of room for other countries to grow.

Today an article caught my attention in Seafood-Source “investments in Russian aquaculture on the rise”. The article speaks of the Russian government supporting the industry with the goal of tripling aquaculture output to 700,000 metric tons by 2030. While the output figure includes fish and other aquaculture species, they also plan on expanding seaweed production. Clearly the Russians are trying to establish themselves in this expanding market.

Why is the USA not joining the race? With an expansive coastline and nutrient rich waters, the USA is positioned to make a real contribution to global seaweed production. Many point the finger at government, citing that it can take over 10 years to attain a permit, if it’s ever approved. With such long lag times and uncertainty, attaining investments can also be challenging.

It’s clear more and more countries are willing to invest in the aquaculture/ seaweed industry. What is unclear is, if and when, the USA is willing to invest.

Hello World!

Today we are announcing that Monterey Bay Seaweeds’ blog page is going live! Dr. Michael H. Graham is a tenured faculty professor and heads the aquaculture division at Moss Landing Marine Labs in California. He is also owner of the Monterey Bay Seaweed company, which provides edible seaweed delicacies. This puts Michael in a unique position to talk about a range of topics relating to seaweeds. The blog will cover cuisine, nutrition, aquaculture practices, ecology, and cutting edge science. While we will be quick to share news, we will be just as quick in dispelling false information in the hopes that the public will be properly informed about their food choices and their environmental impacts.

Please follow us on Facebook, Twitter, or sign up for our news letter.